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Abstract: This study explores how reinforcement learning (RL) 
algorithms like PPO and DDPG can train autonomous systems in 
simulated environments such as CARLA. We designed driving tasks 
like lane following and obstacle avoidance, evaluated performance 
using success rate and collision metrics, and compared RL agents 
with traditional controllers. The results show that RL methods learn 
effective driving behaviors over time. Our work highlights key 
contributions in simulation-based RL training and identifies 
limitations such as sensitivity to environment changes. Future 
research will focus on real-world transfer, multi-agent coordination, 
and sim-to-real adaptation. 
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1. Introduction 
` Reinforcement learning (RL) allows autonomous systems like robots and self-driving cars to learn tasks by interacting 

with their environment instead of being manually programmed [1]. Simulations, such as CARLA or OpenAI Gym, provide a 

safe and low-cost way to train these systems before testing them in the real world [2]. This study explores how RL can be 

effectively used in simulations to improve decision-making in autonomous systems. 

The RL helps autonomous systems learn how to make smart decisions by interacting with their environment and learning 

from feedback [3]. Unlike traditional methods, RL allows these systems to adapt to changing situations without being explicitly 

programmed. This makes RL highly effective for tasks like navigation, obstacle avoidance, and control in real-world 

environments. 

The autonomous systems often fail when transferring policies trained via reinforcement learning from simulation to real-

world environments, due to discrepancies in dynamics, sensor noise, and unmodeled physical phenomena [4]. The study aims 

to evaluate the performance of RL algorithms within simulated settings and investigate methods—such as domain 

randomization and adaptive calibration—to close the sim-to-real gap and improve real-world applicability [5], [6]. 

 

2. Literature Review 
 Several researchers have explored using simulated environments to train RL agents before real-world deployment. Peng 

et al. [8] introduced domain randomization, which varies simulation parameters during training to help policies generalize better 

in real-world conditions. Zhao et al. [5] provided an extensive review of sim-to-real transfer, covering techniques such as domain 

adaptation, meta-learning, and imitation learning to reduce the reality gap. Muratore et al. [7] reviewed randomized simulations, 

emphasizing how simulation variability helps agents learn robust control policies transferable to physical robots. Osiński et al. 

[9] demonstrated a working sim-to-real autonomous driving pipeline, where policies trained in simulation performed effectively 

in real vehicles. Another study by Tai et al. [10] applied RL for mapless robot navigation, showing successful performance by 

training in simulated environments and then deploying agents in real robots. These collective works highlight simulation’s 

crucial role in safe, scalable, and efficient RL training for autonomous systems. 

Despite its promise, RL faces key limitations in real-world autonomous systems. It is highly sample-inefficient, often 

requiring millions of interactions to train effective policies—something impractical for real-world robotics [11]. The sim-to-real 

reality gap remains a major barrier: differences in dynamics, sensor noise, and unmodeled physical factors cause policies that 

work in simulation to fail in real environments [5], [7]. Additionally, RL training is unstable and sensitive, with high variance 

and hyper parameter sensitivity leading to inconsistent behavior and safety risks [12]. 

Many RL methods work well in simulation but often fail to transfer effectively to real-world autonomous systems due to 

the persistent reality gap caused by inaccurate simulation of dynamics and sensor noise [5], [7]. Additionally, RL algorithms 
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are highly sample-inefficient, requiring massive training data that is impractical for real hardware deployment [14]. There is 

also limited research on safety, robustness, and scalable sim-to-real calibration techniques, leaving RL-driven control systems 

vulnerable and unreliable in unstructured environments [13]. 

3. Background and Theoretical Foundations 
 RL is a type of machine learning where agents learn to make decisions by interacting with an environment to maximize 

cumulative rewards. It is typically modeled as a Markov Decision Process (MDP), which includes states, actions, transitions, 

and rewards [15]. The MDP assumes the Markov property, meaning the future depends only on the current state and action 

[16]. 

RL methods are mainly divided into model-free and model-based approaches. In model-free RL, agents learn policies 

directly from experience, while in model-based RL, they build an internal model of the environment to plan ahead [17]. 

Popular model-free algorithms include Q-learning, which learns value functions, and Deep Q-Networks (DQN) that use 

neural networks to handle large state spaces [18]. Proximal Policy Optimization (PPO) is a policy-gradient method that improves 

learning stability [19]. For continuous actions in autonomous systems, Deep Deterministic Policy Gradient (DDPG) combines 

actor-critic methods with deterministic policies [20]. 

 

4. System Architecture and Simulation Environment 
This study targets autonomous vehicles simulated within the CARLA platform, an open-source urban driving simulator 

supporting realistic sensors, traffic, weather, and urban layout configurations [2]. We set up a virtual city environment with 

predefined traffic scenarios, pedestrians, and variable conditions, assuming accurate simulation of key vehicle dynamics and 

sensors. 

The autonomous agent receives simulated sensor inputs (e.g., camera frames, LiDAR) and outputs driving commands like 

steering, throttle, and braking. We integrate RL by defining state observations, discrete or continuous action spaces, and reward 

functions tailored to safety, lane-keeping, and collision avoidance. Training uses model-free RL algorithms like DQN or DDPG 

in simulation, enabling rapid policy learning before any real-world deployment [21], [22]. 

This simulation-based pipeline allows safe experimentation, flexible scenario design, and systematic evaluation of RL 

policies under different conditions to assess convergence speed, performance stability, and transfer readiness. 

 

5. Algorithm Selection & Justification 
We choose to implement DDPG and PPO, two widely adopted model-free Deep Reinforcement Learning (DRL) 

algorithms for autonomous systems. DDPG performs well in continuous action spaces and has shown faster convergence and 

higher reward in CARLA-type simulations, while PPO offers strong stability and scalability with on-policy updates [23], [4]. 

 

5.1. Reward Design 

Rewards are designed around key driving objectives—such as route completion, staying in lane, avoiding collisions—and 

penalizing infractions. Recent studies highlight how simple yet intuitive reward formulations (like route completion plus penalty 

on crashes) improve training stability and transferability [24], [25]. 

 

5.2. Training Strategy 

Training is conducted in simulation with scenario variation (traffic, weather), using experience replay buffers and batch 

updates. DDPG uses off-policy learning for sample efficiency; PPO uses on-policy mini-batch updates to ensure stable policy 

improvements [23], [24]. 

 

5.3. Hyper parameter Settings 

We tune learning rate, batch size, and exploration noise via grid search or swarm algorithms. Prior experiments indicate 

tuning via methods such as Whale Optimization improves performance of DDPG in driving tasks [26]. 

 

6. Experimental Setup and Evaluation Metrics 
We design several simulated tasks in CARLA, including route following, intersection navigation, and dynamic obstacle 

avoidance (e.g., pedestrians and vehicles), with varying weather and traffic flow [2]. Evaluation metrics include success rate 

(percentage of episodes reaching the goal), collision rate (frequency of crashes or infractions), and convergence time (how 

quickly the RL policy stabilizes) [2], [27]. We also assess route completion percentage, centerline deviation, and episode 

reward mean to gauge driving stability and efficiency [28] ,[29]. As baselines, we compare RL-trained agents like PPO or 

DDPG against simpler methods—such as rule-based or imitation learning agents—or earlier RL variants like A3C, to highlight 

improvements in safety and performance [2]. 

 

7. Results and Discussion 
In this study, autonomous vehicles were trained using reinforcement learning in simulation environments like CARLA. 

Tasks included lane following, obstacle avoidance, and traffic navigation under varied weather and traffic conditions. The 

main evaluation criteria were success rate (completing the task), collision rate, and convergence time (how quickly the 

model learns). RL agents like PPO and DDPG showed better performance over time compared to rule-based baseline models. 

The PPO agent had smoother learning curves and fewer collisions, while DDPG was better at handling continuous control. 
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These comparisons show that RL can outperform traditional methods in dynamic driving scenarios, though tuning and training 

stability remain key challenges. 

 

8. Conclusion 
This study demonstrated that reinforcement learning algorithms like PPO and DDPG can successfully train autonomous 

vehicles in simulated environments, achieving high success rates and minimal collisions in tasks such as lane following and 

obstacle avoidance. The research contributed a structured RL training pipeline, thorough comparisons with traditional control 

methods, and evaluations across varied driving scenarios. 

While the results are encouraging, challenges such as reduced performance in unfamiliar settings and sensitivity to 

environmental randomness persist. Future directions include exploring multi-agent reinforcement learning for cooperative 

driving, applying transfer learning to adapt models to new environments, and moving toward real-world deployment. Plans also 

involve integrating sensor noise and using hardware-in-the-loop simulations to narrow the gap between simulation and reality. 
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